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Abstract

An analytical procedure is described for evaluation of the effect of release of fiber prestress, applied prior to matrix
consolidation, on stress distribution in individual plies and at free edges of laminated composite plates. Both thermal
changes, piecewise uniform transformation strains in the plies and overall mechanical loads can be considered in the
analysis. The thermal and transformation load contributions are decomposed into superpositions of certain uniform
fields with mechanical loads. Release of fiber prestress is regarded as an equivalent uniaxial compression applied at the
edges of each prestressed ply. Optimized distributions of fiber prestress are found in individual plies such that stresses in
both laminate interior and at the free edges remain within allowable limits, while the applied mechanical load may
change from zero to a certain maximum value. Specific results are found for cross-ply and quasi-isotropic symmetric S-
glass/epoxy laminates under tension. They clearly demonstrate the substantial potential of fiber prestress in damage
control and prevention in laminated composite structures. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Few problems in mechanics of composites have attracted such long lasting attention as analysis of
interlaminar stresses at free edges of laminate plates. The early work was initiated by Hayashi (1967), and
much advanced by Pipes and Pagano (1970), Pagano (1978a,b), and Wang and Choi (1982). The varia-
tional approach to free edge problems, suggested by Pagano (1978a,b), is based on Reissner’s (1950)
variational principle. It is capable of satisfying traction and displacement continuity conditions at inter-
faces between adjacent layers, and also stress equilibrium in the sense of vanishing resultant force and
moment in separate sub-regions, normally chosen as layers of the laminate. More recent results, based on
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minimizing the complementary energy, are obtained using statically admissible fields that satisfy stress
equilibrium and traction continuity conditions pointwise but do not satisfy displacement continuity con-
ditions across layer interfaces. They have been developed, primarily for uniaxial tension and cylindrical
bending, by Kassapoglou and Lagace (1986), Rose and Herakovich (1993), Yin (1994a,b), Flanagan
(1994), Kim and Atluri (1995a,b), and Cho and Kim (2000). More accurate solution methods for stress
fields in the entire laminate under general loading have been recently proposed by Vel and Batra (2000) and
Wang et al. (2000). Several attempts have been made at using the analytical results in improving laminate
design, mainly by selecting laminate stacking sequences and/or layups that reduce the interlaminar stress
magnitudes. Some of these are reviewed by Herakovich (1998). Among the most notable is the discovery by
Christensen and DeTeresa (1992) of nearly zero interlaminar stresses in the quasi-isotropic (0/£60) lami-
nates loaded by remotely applied tension in the 0° direction. This layup, with minor deviations from the
+60 angles, offers the said advantages in many laminate systems, providing that the tensile load is applied
only in the 0°, +60 or —60 directions (Alberski, 2000). Kim and Atluri (1995a,b) have examined a different
methodology for reducing the free edge stresses. They found optimal through-thickness temperature
gradients that when applied together with uniaxial loading completely eliminate or minimize the interla-
minar stresses.

The present work explores a new method of reducing the free edge stresses, by applying an optimized
prestress to the fibers in selected plies prior to matrix consolidation, and releasing this prestress after matrix
cure. The prestress magnitudes needed in most applications are well within the capability of present
equipment used in filament winding or fiber placement fabrication procedures (Table 1) and are often
applied in reducing fiber waviness for improvement of ply compressive strength. Related uses of fiber
prestress in residual stress reductions in cylindrical shells have been examined in our recent work (Dvorak
et al., 1999; Srinivas et al., 1999). Applications to damage control in laminates have been explored by
Dvorak and Suvorov (2000).

The loads applied to the laminate in the present work include not only mechanical loading by nor-
mal stresses and bending and twisting moments, but also thermal strains and other eigenstrains or trans-
formation strains that may be applied in individual plies, and of course, release of fiber prestress at the
free edges. Section 2 presents various definitions and certain decomposition procedures that convert
the transformation strain loads into uniform fields and equivalent mechanical loads. Section 3 outlines a
simple application of this approach to reduction and/or complete elimination of thermal residual stresses
caused by cooling from fabrication temperatures. Section 4 reviews the boundary conditions of the prob-
lems considered and the solution method used, based in part on Yin’s (1994a,b) implementation of the
minimum complementary energy principle. Section 5 outlines the optimization procedure for evaluation of
ply prestress distribution under prescribed loads, subject to constraints derived from laminate strength
criteria. Section 6 presents many results illustrating the potential of fiber prestress in reducing both free
edge stresses and improving resistance to matrix cracking in the interior sections of several laminates.

Table 1

Force needed to generate 1000 MPa stress in filaments/tow
Fiber Diameter (um) Filaments/tow Force (N)
S-glass 14 2000 307.88
S-glass 6 2000 56.54
Kevlar 12 1000 113.12
Carbon AS4 8 12000 603.19
Carbon IM8 5 12000 235.64
Carbon P-100S 10 2000 157.08

Nicalon (SiC) 15 500 88.35
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2. Problem formulation
2.1. Geometry, material properties and loading

The laminated plate considered here consists of a certain number N of thin fibrous layers or plies bonded
at n = N — 1 parallel plane interfaces. Fig. 1 shows schematically a representative volume element in the
(X,7,Z) global or overall coordinate system where the in-plane dimensions —a < X < a, —b <Y < b are
assumed much larger than the total thickness, a, b > ¢. The X-axis coincides with the fiber direction in the
0° plies and the Z-axis with the out-of-plane direction. The pliesi = 1, 2, ..., N are numbered starting from
the bottom of the plate; interfaces between plies are numbered in the same order, with Z = z; | denoting the
lower interface of the ith layer, and Z = z, the bottom surface of the laminate. The fiber direction in each
ply 7 coincides with the x/|-axis of the local (x},x},x}) coordinate system, where x} is parallel to Z. The angle
¢, is measured counterclockwise from the laminate 0° or X-direction to the fiber direction x| in the ith ply.
Ply thickness is denoted by # and the thickness of the laminate by = ) ¢,.

The individual layers are regarded as homogeneous and at most orthotropic in the local system, with one
plane of material symmetry parallel to the plane of the plate, and one aligned with the direction of the fiber
axis in each ply. Elastic compliance and stiffness of each ply are first estimated in the local coordinate
system (x},x5,x;) by one of several available methods. The ply constitutive relations are then written in the
local and overall coordinate systems as

€ = S0, +a; A0+ p,, (la)
€ :Sia'i‘i‘&iAH‘f'ﬂi (lb)

where, in the local coordinates (x!,x5,x%), the €; and o; are the (6 x 1) ply strain and stress fields, ; is the
(6 x 6) ply compliance matrix, A0 is a uniform change in temperature. The a; = {0/ o o, 0 0 0}" is the
vector of linear thermal expansion coefficients of the ply, and g, = {1 1 1 0 0 1i}" is a vector of ply
transformation strains or eigenstrains.
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Fig. 1. Geometry of an element of a laminated plate.
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The terms in Eq. (1a) transform into the overall (X, Y, Z) coordinates according to
€ = Tl.Te,-, 6, = R;FO',', Si = T;FS,TI (2)

The S, R and T matrices are described in Appendix A. The &; and g, transform as strain tensors. After this
transformation, the nonzero coefficients of the compliance and stiffness matrices coincide with those of a
monoclinic system.

The applied loads considered in the present analysis include: (i) Thermal strains and other transfor-
mation strains or eigenstrains that appear in Eq. (1a). These are stress-free deformations that a ply would
experience if free of constraints. In addition to phase transformations, moisture absorption, inelastic
deformation, as well as certain equivalent eigenstrains can be regarded as transformation strains. (ii) Uni-
form normal and shear tractions applied at the free edges X = +a or Y = +b of individual plies, e.g., by
release of fiber prestress. (iii) Uniform average in-plane tractions, as well as bending and twisting moments,
attached to the laminate at locations far removed from that of the representative element in Fig. 1; these
can be contributed both by actual mechanical loads and by force and moment resultants of free edge
tractions applied in solving for the above loads (i) and of the tractions simulating release of fiber prestress
(ii).

Regardless of their origin, each of the above load systems is assumed to create an interior stress field in
the laminate, far away from the free edges, that depends only on the thickness coordinate Z and not on the
in-plane X'Y-coordinates. The interior stress and deformation fields can be obtained by a laminated plate
theory; these have been described by Christensen (1979), Whitney (1988), Noor and Burton (1989) and
Reddy (1997), among others.

Both top and bottom surfaces of the laminate are assumed to be traction free. The tractions applied at
the free edges are uniform in the X- or Y-directions, respectively, so that the free edge stress fields are
functions of the YZ- or XZ-coordinates, and thus need to be evaluated only on planes X = 0 and/or ¥ =0
in Fig. 1, far away from the corners of the representative volume element.

2.2. Decomposition of transformation fields

The effect of uniform thermal changes and other ply eigenstrains on the residual stresses in the plies is
modeled by a superposition of certain uniform equivalent tractions applied at ply free edges, with a piece-
wise uniform stress field in the laminate.

Consider a laminated plate of any layup, separate the plies, and let each ply be subjected to uniform,
stress-free transformation strains given by Eq. (1a) at ¢; = 0. In general, these strains are different in each
ply, so the laminate cannot be reassembled; however, the plies remain plane and parallel to each other.
Next, attach auxiliary in-plane tractions at all free edges of each ply to generate in-plane ply stresses a;, that
in superposition with the local transformation strains create the following uniform in-plane strains in each

ply
€ = 81,61 + S1,63 + 0 A0 + i,
& = 8120 + 8365 + 0, A0 + 5, (3)
b = Syl + i
The auxiliary tractions can be selected to make the total ply strains isotropic in the x|xj-plane and of the
same magnitude in all plies
g=é=¢ &=0 (4)

This yields the magnitudes of the auxiliary stresses,
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The uniform, isotropic in-plane strain € is a constant that can be selected at will. A convenient choice is
¢ = 0, which renders the stresses (5) equal to the eigenstresses caused in each ply by the applied eigenstrains.
Since the in-plane ply strains are now of the same magnitude in all plies, the laminate can be reassembled.
Finally, the auxiliary in-plane tractions that support the uniform strain state in the presence of ply ei-
genstrains need to be removed. The auxiliary stress vectors are transformed from the local coordinates of
the ith ply to the global (X, Y, Z) coordinates, Fig. 2, and applied with reversed signs as surface tractions at
the respective ply edges. The ply unloading vectors are defined as,

—6,=—R'{6 66,0004} (6)

The final residual stress state in the laminate is obtained by superimposing the uniform ply stresses (5)
with those generated by the force and moment resultants of the ply vectors (6). These may cause bending
and twisting in other than symmetric and symmetrically loaded laminates. The final residual strain state is
found by superimposing the uniform strain field (4) with that caused in the laminate by the unloading
vectors (6). Clearly, no free edge stress concentrations are associated with the uniform strains (4), which
include the applied ply eigenstrains. Such concentrations are caused only by the purely mechanical un-
loading (6), and can thus be analyzed using available procedures.

Thermal and other normal transformation strain components can also be specified in the x3-direction. In
the context of Eq. (3), the out-of-plane strains are,

€ = 85,61 + 83,05 + 05 A0+ 1y, €= =0 ()
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Fig. 2. Free edge Y = b loaded with equivalent tractions.
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The overall through-the-thickness strain associated with the auxiliary uniform in-plane strain state is
obtained as é; = > (#;/t)€;, where #; and ¢ are the ply and laminate thicknesses, respectively. Superposition
of Eq. (7) with the strains caused by Eq. (6) provides the final magnitudes. In laminates loaded by com-
pressive stresses normal to their plane, the resulting in-plane ply deformations can be regarded as additional
eigenstrains (Dvorak and Suvorov, 2000, Section 5).

2.3. Free edge tractions representing release of fiber prestress

Fiber prestress (o-’fl)j, is defined as the average stress applied to the fiber prior to solidification of the
matrix. As in op. cit., the average in-plane ply tractions that support the fiber prestress after fabrication and
processing are specified in the local coordinates of each ply as

o = {¢/(c7,)» 00000} (8)

where cj, is the fiber volume fraction. Release of fiber prestress can be regarded, on average, as application
of uniform ply free edge tractions that cancel Eq. (8) at the edges. After transformation to the global
coordinates (Fig. 2) the nonzero components become
_C;’(O{l );3 cos’(¢;),

—cy(o1)p sin’(¢y), ©)
- Gf; = _C;’(‘)-{l)l}’ cos(¢;) sin(¢;)

where ¢, is the angle that the ith ply fiber direction contains with the X-axis.

Together, the piecewise uniform ply traction distributions (6) and (9) specify the boundary conditions in
solutions of problems involving ply thermal and other transformation strains, and release of fiber prestress.
The uniform fields (3) and (4) represent a part of such solutions.

3. Thermal stress reduction by fiber prestress

A simple and potentially useful application of fiber prestress can be made in laminates which are sub-
jected to large residual stresses after fabrication or in service. With certain exceptions noted below, a dis-
tribution of fiber prestress in individual plies can be found such that it reduces to zero the free edge residual
stress field caused by fixed thermal and possibly other transformation strains induced by cooling from a
fabrication temperature.

As an example, consider a laminated plate of any layup that is subjected to a uniform thermal change A0
applied during cooling from the fabrication temperature. In-plane moduli and thermal expansion coeffi-
cients of all plies need to be identical, and as is the case in most composites, the expansion coefficient of the
matrix is assumed to be larger than that of the fiber, hence during cooling a free ply contracts more in the
transverse direction. In turn, the prestress release contributes to a positive transverse strain and compressive
longitudinal strain. This allows application of fiber prestress that creates the same isotropic strain field in all
plies, and thus cancels the thermal stress concentrations at the free edges of the laminate.

To evaluate the required prestress magnitude, the decomposition procedure outlined in Section 2.2 is
used again — the plies are separated, and each ply is subjected to the uniform, stress-free thermal strain. In
general, these strains are different in the plane of each ply, so the laminate cannot be reassembled. Next,
suppose that a certain fiber prestress 6, = —cf(oj1 1) has been released. The prestress magnitude is selected
such that after its release, and in superposition with the thermal strain, an isotropic in-plane strain field is
created in each ply
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€:S116'1 +O€1A0:S126'1+0C2A9 (10)
The required prestress value in each ply is thus found as

3 o ((Zz—&(l)AH
(0{1)p—m>0 (11)

and the uniform strain in all plies after cooling and prestress release as
é: [(Slzotl —S“acz)AH]/(Slz _Sll) (12)

Note that, according to Eq. (A.1), (Si;1 — S12) = (1 4+ vi2)/E; > 0, the assumption is that o, — oy > 0 and
A0 < 0. Since all plies are deformed by the same isotropic in-plane strain, and are free of tractions, the
laminate can be reassembled. The strain (12) is preserved through laminate thickness. Note that neither this
strain nor the prestress (11) depend on ply orientation or laminate layup. Of course, local concentrations at
the free fiber ends are not eliminated by the prestress.

4. Solution method
4.1. Interior fields and free edge boundary conditions

In standard free edge problems, the boundary conditions typically prescribe zero surface tractions at one
pair of free edges, such as the planes ¥ = +b in Fig. 1, and an average normal strain, together with a
bending moment and torque at the other pair, X = +a. In the present case, the boundary conditions must
also reflect the presence of equivalent tractions generated by ply transformation fields and prestress release.
These are represented by a piecewise uniform distribution of ply surface tractions applied at the lateral
planes X = +a and Y = +b in Fig. 1. With reference to Egs. (2), (5) and (9), after transformation to the
overall coordinates, these ply tractions will be denoted as

& = —R,-T[&f + o.pi] = {Gii gji 000 O'jclv}T (13)

)

where 6* are the total free edge tractions applied to the ith ply, defined in the overall (X, Y, Z) system (Fig.
2). The 6, are the equivalent tractions (5) and (6), and the —a” are ply tractions caused by prestress release
(9), and Rl.T is the coordinate transformation matrix introduced in Eq. (2).

The tractions (13) generate both free edge and interior fields in the laminate, the latter are superimposed
with the uniform fields (3), (4) and (12), transformed into the overall system, and with the fields induced by
any actual mechanical loading. The interior fields that will be denoted by & can be found by a lamination
plate theory. In constructing this solution, it is convenient to decompose the total load applied to the
laminate of Fig. 1 into two subsystems, #1 that is applied only at X = +a while the edges Y = +b are
traction free, and subsystem #2 applied at ¥ = +b while the other pair of edges is traction free. In both
subsystems, there are no tractions at the top and bottom surface of the laminate.

Let the #1 subsystem consist of both the equivalent ply loads (13) present at X = +a, and actu-
ally applied mechanical loads denoted by superscript (m), so that the total force and moment resultants
become,

ZN IN
1 i1 n 1 i (1 n
N§>:/ ol dZ + N}, M£>=/ o;zdZ + M},
Z0 20
W W (14)
N“):/ oV dZ + N; M“>:/ oizdz + M,
A1) 20

xy xy? xy xy
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For the corresponding interior stress field to be independent of the X-coordinate, and for the displacements
to be continuous across ply interfaces, the displacements in all plies must represent generalized plane
deformation of the form (Lekhnitskii, 1963),

u) = (4Y = BiZ+ C)X + Ui(Y,Z) + on Z — oo +u,
o :—A1X2/2—@1XZ+ VI(Y7Z)—‘,—(,02X—(,U3Z+U(()I)7 (15)
wh) = BLX? /2 4+ XY + Wi(Y,Z) + 03 — X +w})

where the constants 4; and B; describe uniform bending with respect to the Z and Y axes, and Cj, 0,
uniform extension and rotation with respect to the X-axis. The functions V;(Y, Z) and W, (Y, Z) represent in-
plane deformations, U, (Y, Z) characterizes the warping of the plane of the cross-section X = const, while
the w;—w; and u(()l) , vf)U, wé” are parts of the rigid body displacements. For example, the strains and bending
and twisting curvatures of the plate, predicted by the classical laminated plate theory for the #1 loading
subsystems (14) are,

W=z =G -BZ W)= -6.Z (16)

Since the edges ¥ = +b are traction free under the #1 subsystem, the constants e_‘v), ySy, and K2 are chosen
such that, in sections removed from the loaded ends, the resultants of the interior fields,

ZN ZN
N — / &§}>dz =0, My<1> = / a«;”zaz =0,
z0 20

y

ZN ZN (17)

N :/ ¢dz=0, MWV :/ eMzdz=0
»w 9 w

» X
20 20

The subsystem #2 represents only the equivalent tractions (13) applied at the edges Y = +b, which are free
of any mechanical loads. The interior stress and strain fields caused by this loading are the same as those
caused in an extended laminate by the resultants,

ZN ZN
() si(2) @ — i(2)
Ny = / o, dz, ]\/[y = / a; Zdz,
Z0 20
: . (18)
NO = [ @dz, MO = [ oi0zdz
wo » ’ wo w
Z0 20

The displacement field follows from Eq. (15) by changing the X-axis components to Y-axis components,
and vice versa. Similar changes are required in Eq. (16), which now becomes,
P =90 — 6.7 (19)

6{(3) — 63 — ZK)?’ 652) = C2 - 3227 )))a(

The constants ¢), 79, and «}

X X

resultants on X = =+a are,

N® = / T ilaz—0, MO = / " 0zdz =0,

. . (20)
NO = / ¢2dz=0, M = / 60zdz=0

z0 Z

Xy Xy
0

are again chosen such that in sections removed from the loaded ends, the

Additional conditions connecting the shear force resultants are presented in Appendix B.

On planes X =0 at —b < Y < +b, and Y =0 at —a < X < +a, that are removed from the free and
mechanically loaded edges of the laminate, the interior stress and deformation fields generated by the two
above subsystems are functions of only the Z-coordinate. Collectively, they will be denoted by,
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With reference to Figs. 1 and 2, the problem at hand can be formulated as follows: For a prescribed
average normal strain, bending moment and torque at the edges X = +a, find the stress ficld in the cross-
section X = 0 of the laminate, under the free edge and interior boundary conditions prescribed through the
thickness of each plyi=1, 2, ..., N,

o,=0, at Y =+b, o, —d, at¥ —0,
Giyzo‘;; at Y = +b, o‘iy—>5‘iy at Y — 0, (22)
o,=0atY¥=%b, ¢, —0aty—0

such that it satisfies traction continuity conditions at ply interfaces Z = z;

i i+1

GAZ O-rz ?

i 1+1

ol = o (23)
i i+l

GZ O-Z

and zero traction conditions on laminate surface planes Z = z, zy

ze|Z:zg - G;z'Z:zo - O’; |Z:zo = 0’

(24)
6)Z|Z:ZN = o_fv\gZ:zN = aiv|Z:zN = O’
The above boundary and interface conditions must conform with the overall equilibrium conditions. For
piecewise uniform tractions boundary conditions at ¥ = 0 and Y = +b the equilibrium conditions can be
formulated as

Y=b J
/Y oLl dY + Z;[a) — &)t =0 (25)

t;
—54—;4:0 (26)

Y=b J
JIRCT S S AT @)
Y i=1 i

4.2. Admissible stress fields

The stresses in the X' = 0 plane of each ith layer of the laminated plate can now be represented by a pair
of stress functions F'(Y,Z) and ¥'(Y, Z) (Lekhnitskii, 1963), such that,
Gi:Fi, O_i:FViy7 O_[ :_F[7
y 2z i z Y i )z )z (28)
Oy = _lP,}ﬂ O-xy = l[l’z

The remaining stress ¢’ is determined from,
1

7 = S_’(Elv - {5 2‘7 + S0l + S16GXy}> )
11
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where S is the ply compliance in the overall coordinate system as in Eq. (2) and €. is the normal strain in the
ith ply. In Eq. (29) we assumed that the axial normal strain ¢ is uniform in the Y-direction, and thus a
function of only the Z-coordinate, determined by the selected lamination theory solution for the interior
field. For example, for the loading subsystems #1 and #2, this strain is given as

€ =C—BZ, z,1<Z<z (30)

where C is the axial strain in X-direction of the plane Z = 0 and B is the curvature characterizing bending
deformation with respect to the Y-axis.
Next, we adopt the polynomial approximations of the stress functions suggested by Yin (1994a,b),

F'(Y,n) =1 =30" +20")F_((Y) + (n =20 + )Gy (Y) + (3 = 207 )F(Y) + (i’ — ")t Gi(Y)
i=1,2,....N (31)

YY) = (1 =) Pia(Y) + 0 iY) + (n = n*)tHia (Y) (32)
where the nondimensional thickness coordinate
n:(Z_Zi—l)/(Zi_Zifl)v i:1a2a"'7N (33)

The F;(Y) and F;_;(Y) are values of F'(Y,Z) on the interfaces Z = z; and Z = z; — 1 and the Z-derivative
of the function takes values G;(Y) and G;_;(Y) on these interfaces. Similarly, ¥,(Y) is the value of ¥'(Y,Z)
on the ith interface Z = z; and H;(Y) is the value of the Z-derivative of the function on the upper side of the
ith interface. The stress fields represented by Eqgs. (31) and (32) can be shown to comply with the interface
traction continuity conditions (23).

As noted by Yin (1994a,b), the present polynomial approximation of the stress functions admits linear
through the ply thickness distribution of in-plane stresses o;, and aiy. Thus, the order of a given_approxi_—
mation is sufficient to allow application of piecewise uniform distributions of ply tractions ¢ and o},
caused by ply transformation fields and release of prestress and also of interior stress fields linear through
ply thickness. Selection of higher order polynomials would provide for even higher order stress distribu-
tions. It is worth noting that the stress functions (31) and (32) do not produce a stress singularity at the free
edge Y = +b. It was found by Ye (1990) that the singular orders of interlaminar stress expansions at the
free edge are at least by 10 times smaller than —1/2 , and hence, the strength of the singularity is quite weak.
Nevertheless, the presence of singularity can be manifested by higher order polynomial expansions of the
stress functions F' and ¥’ in the thickness coordinate. For example, solutions based on quintic polynomial
expansions of F' and cubic expansions of ¥ produced steeper stress gradients near the free edge (Yin,
1994a,b) than those obtained from the stress functions (31) and (32). Since the objective function (61)
introduced later for solving optimization problem does not include interlaminar stress components, the
present polynomial approximation of stress functions given by Egs. (31) and (32) without singular terms
appears to be sufficiently accurate.

Boundary conditions for the functions F;, F} G;, G}, ¥;, H; at the free edges ¥ = b and at ¥ = 0 follow
from Eq. (22). The required stresses found from Eq. (28) to Eq. (32) are

0, = L6+ 1F(Y) + (~4+ 601G (Y) + (6~ L0)E(Y) + (61~ 2G(Y)],

0 = —%[(—6:7 +60°)FL (V) + (1= 40+ 37)4G_, (Y) + (61 — 60°)F/(Y) + (30° = 20)4,G{(Y)),
Oy =+ (¥ (V) + 208(Y) + (1= 20)0H (1)

xy
1
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Then, using Eq. (22) one can derive at Y = b and Y =0,

1 )
t_2 [—6F;_1(b) — 4tiGi_1(b) + 6F;(b) - leG,(b)] = 6;]|Z:z,v,1

1 ;

S [6F1(5) +24Gi1(b) — 6F(b) + 41,Gi(b)] = .,

| (35)
l‘__z [—6E_1(0) - 4tiGi—l(0) + 6E(0) - 2[1Gl(0)] - 6; Z=zi_,

%[6E,1(0) + Zt[G[,l(O) - 6E(0) + 4t,G,(0)] = 6;'|Z:z,- l = 1, 2, PN 7N
I—[l;l (b) = o-ij/|Z:zl-,]’

1 .

(2201 (b) + 294(8) — tHi A ()] = Pl

1 | 36
I—Ii—l (0) = &;y|Z:zl-,1’ ( )
1 ~i

t_l[_zlpl_l(0> + 2?’,(0) — t,[‘[,_l(O)] == O-xy Z=z 1 = 172, . ,N
F(b) = Gi(b) =0, 37
F0)=G(0)=0 i=12,....N

Values of the stress functions at the bottom and top surfaces of the laminate can be found by enforcing
equilibrium conditions. Force equilibrium in the Y-direction implies

N zi N zZi N
v=Y [ qaz=3 [ raz=Yrr
=1 YZi-1 i=1 YZi-1 i=1

Zi
Zi1

where the subscripts 0 and N identify values of the bottom and top laminate planes, respectively. Moment
equilibrium with respect to X-axis requires

N z; N zi N N
M= [ azaz=Y [ rzaz=>rzg =Y
i=1 Zi-1 i=1 Zi-1 i=1 i=1
= (—Fy + Gyzy) + (Fy — Gozo) (39)

Force equilibrium in the X-direction requires

N Zj N zi N
Nyx:Z: /la;ydz:zl:/ szdZ:Z:?”IZ;I — Y, W, (40)
i= Zi— i= Zi-1 i=

The absence of surface tractions at the top and bottom surfaces of the plate (24) implies that Gy, Gy, ¥, and
¥y are constants and Fj, Fy are at most linear functions of Y. However, because the bending moment in Eq.
(39) is constant, Fp, Fy should be chosen as constants as well.

Without loss of generality, the stress functions in the first ply at the bottom surface of the laminate can
be selected to satisfy

Fo=Gy=¥,=0 (41)

Then, from Egs. (38)-(40), one can find the following values at the top surface of the laminate
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GN = ya FN = NyZN — MW lPN = Nyx (42)
According to the definition of H;(Y) in Eq. (32) the function Hy = 0.
The remaining ply stress functions to be found are Fi(Y), F5(Y), ..., F,(Y), Gi(Y), G»(Y), ..., G,(Y),

YY), P2(Y), ..., Pu(Y), and Hy(Y), H,(Y), ..., H,(Y), where n = N — 1 is the total number of ply in-
terfaces. Solution of the systems of linear equations (35) and (36) provides for the boundary values of these
functions and the values at the top surface Fy, Gy and ¥y given in Eq. (42).

4.3. Minimum of the complementary energy functional

Governing equations for the 4n + 1 stress functions F;(Y), G;(Y), ¥:(Y) and H;(Y) defining the admis-
sible field in the laminate are found from a stationary value of the complementary energy functional,

1
UZE//quJWdeZ_//A TZl_tde pq =x,v,z,yz,x2,xy, k=1,2,3 (43)

where 4, is the area over which displacements #; are prescribed, and T is the traction vector corresponding
to those displacements.
The displacements in the cross-section X = const are given as

u=(C—BZ)X +U(Y,Z),
v=-0ZX +V(Y,2), (44)
w=0XY + W(Y,Z)
where U(Y,Z), V(Y,Z) and W (Y, Z) are unknown functions, C is the axial strain in the plane Z = 0, B is the
bending curvature and @ is the twisting curvature. The constants C, B, and @ are obtained from a lami-

nation theory solution for two load systems #1 and #2. Then, the surface integral in the expression for the
complementary energy for the element of the laminate of unit length X() — X® = 1 can be written as

Z=zy Y=b
/ / T{u,d4 = / / [(C—BZ)d. — O©Zs' + OYd' |dYdZ (45)
Ay Z=zy Y=0 .

Elimination of the longitudinal stress component ¢’ with the use of Eq. (29) and change of variables (33)
lead to the final expression for the complementary energy in terms of stress components (28)

BN " i i i
:EZ/ / { 22+O- S33+O- S44+O-sz55+a S66+20y0-zS23+2ayaxyS +2620-xyS

(C—B(zi1 + ’7’:‘))2 §i2 Si} gi()

+26° asz -2 — +2(C = B(zio1 +nt)) | = a’ +== ol + 3¢ — o

” Sh St oSy s, T
+20(zi1 + nt;)a, — 20Ya, }tlden (46)

where
S =8 SiSi =2,3,...,6 47
i~ Py S[ ’ L] =49, ) ( )
11

The stationary value of the complementary energy functional is equated to zero,

SU =0 (48)
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Substitution of stresses (28), expressed in terms of stress functions (31) and (32), into Eq. (48), integration
first with respect to #, and then by parts with respect to Y, yields a system of 4n 4+ 1 ordinary differential
equations for the 4n + 1 unknown functions F;(Y), Gi(Y), W:(Y) and H,(Y).

Let the functions Fj(Y), G,(Y), Y«(Y),i=1,2, .., nand H(Y),i=0, 1, ..., n be arranged as compo-
nents of (n x 1) vectors F, G, ¥ and (n+ 1 x 1) vector H, respectively,

F={FR(Y)RY).. F{)}"
G ={G,(Y)Ga(Y)...Gy(Y)}"

(49)
Y= {P(Y)P(Y)... P,(YV)}
H = {Hy(Y)H,(Y)...H,(Y)}"
In turn, define column vector X as,
X={F' G"¥Y"H"}] (50)
Then the system of ordinary differential equations can be conveniently written as,
wx” + vx" 4+ U = b(C,B, 0,N,,M,,N,,) (51)

where W, ¥V and U are (4n + 1) x (4n + 1) constant real symmetric matrices, and bis a 4n + 1 x 1 constant
vector depending on axial strain in X-direction C, bending curvature with respect to Y-axis B, twisting
curvature O, in-plane normal stress resultant along Y-axis N,, bending moment with respect to X-axis M,
and shearing stress resultant N,,. Note that a single component from each of the following pairs of variables
is prescribed on the boundary of the laminated plate,

GXN)H eijya yxy]vx}v kxan kyMyv @M’cy (52)
A particular solution of Eq. (51) is chosen to be a constant vector,
X' =U"b (53)

This corresponds to the interior stress fields ¢ Eq. (21), found with the help of a lamination theory, for the
laminate subjected to deformation characterized by three constants C, B and @, and traction boundary
conditions characterized by force resultants N,, N,, and moment resultant M,. This implies that

FF'=F(0), & =G;0), Y/ =%,0), i=1,2,...,n,

54
H’ = H(0), i=0,1,2,...,n >y
where F;(0), G;(0), ?;(0) and H;(0) are found by solving Egs. (35) and (36).
The homogeneous solution to Eq. (51) is sought in the following form
F=p exp(w(b—7Y)), G=p°exp(w(b—7)), (55)

¥ =p" exp(a(b— ), H=p"exp(a(b—Y))

where p©, p©, p¥, p” are yet unknown constant vectors. According to Eq. (54) the homogeneous solution
(55) should vanish away from the free edges at ¥ = 0. Define,

p=1{" p% p"p" )" (56)

Substitution of Eq. (55) into the homogeneous part of Eq. (51) reduces the differential equations to the
system of algebraic equations

o*Wp+o*Vp+Up=0 (57)
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Solution of the eigenvalue problem (57) yields 12n + 2 eigenvalues w. Details of the solution are presented
in Appendix C. Only values of o with negative real part should be left in the solution (55) so that the
interlaminar stresses decay in the interior region of laminate. Therefore, only 6n + 1 eigenvalues w are se-
lected and the homogeneous solution is obtained by a linear combination of 6n + 1 eigenvectors,

F' = ppis; exp(w;(b — 1)),
Gl = pijs; exp(w;(b - 1)),
Y’f{:pzfsjexp(wj(b—}’)), i=1,2,...,n, j=1,2,...,6n+1,
H!" = pllsjexp(w;(b—7Y)), i=0,1,...,n, j=12,....6n+1

(58)

where s; are constants to be determined. The total solution is a sum of homogeneous (58) and particular
(54) solutions

F; = pys; exp(aw;(b —Y)) + F,
G; = pjjs; exp(w;(b — Y)) + G,
¥ =plsjexp(wj(b—Y)+ ¥, i=12,...,n j=12,....6n+1,
H; = plisjexp(w;(b—Y))+H, i=0,1,....n, j=12,....6n+1

(59)

The 6n + 1 constants s; are determined from 6z + 1 boundary conditions by prescribing F; (), G;(b),
F!(b), Gi(b), Pi(b),i=1,2,...,nand H(b), i=0, 1, ..., n from Egs. (35)—(37). In view of Eq. (54), the
traction boundary conditions at the interior of the laminate ¥ = 0 are satisfied provided that exp(w;b) is of
negligible magnitude.

This completes solution of the problem. The stress field in each layer can be found from Egs. (28) and
(29). The interlaminar stress along the ith interface may be obtained directly as,

0. =F/'(Y)
0. = —Gi(Y) (60)
6.=-Y(Y) i=1,2,...,n

1

5. Optimized fiber prestress distribution
5.1. Objective function and constraints

Here we examine the use of fiber prestress for reduction of the total free edge stress components that
contribute to specific failure modes at ply interfaces. In particular, the peel stress g, promotes mode |
fracture, and the shears o,. and ¢,. may induce modes II and I1I along the edges X = +a. At Y = +b, the ..
and o,, contribute to modes III and II. An algorithm will be developed that allows selection of a specific
fiber prestress distribution in individual plies such that a certain objective function of the total free edge
stresses at ¥ = +b is minimized. Several forms of the objective function can be employed, involving either
the above local stresses, or the in-plane surface tractions at ply free edges, or both. In the absence of ex-
perimental data that would support a specific selection, we have explored functions minimizing the maxima
or averages of interfacial stress components, but found them less effective in providing stable solutions than
those that minimize the differences between the in-plane interior and surface stress components. In par-
ticular, due to highly nonuniform interlaminar stress distribution along the interfaces the stress maxima are
reached at a priori unknown points generally different for each interface and stress component. On the
other hand, definition of interlaminar stress averages, such as the one proposed by Brewer and Lagace
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(1988) for their delamination criterion, requires the selection of averaging distance. Ambiguity that exists in
both approaches reduces chances of cancellation of free edge stresses and leads to complications in the
formulation. Since the present stress-reduction method is based on application of free edge tractions by
prestress release, we seek prestress magnitudes that minimize the objective function,

N
1= Z[(Ujhp — &’yP) + (Gjl,m _ &zym) + (6;:,0 . &;0)] [(O,)yczyp Xy) (O,yzm . ;}r}n) (O,)yczy() ;}(}))]2 — min
i=1
(61)
where i = 1,2, ..., N is the ply number and the superscripts m, 0 and p denote, respectively, certain in-plane

stress components caused by mechanical, ply thermal eigenstrains a; Af, and prestress loads. The stresses
ay?, o, o3, and oir, o, o are the surface tractions at Y = b, the stresses denoted by letters with a
tilde are ply stresses at Y = 0, found by a lamination theory, caused either by mechanical loads N,, M,, M,
applied at the edges X = +a or surface tractions o;’p o” 4 and cr;;”, (rf’ applied at the free edges ¥ = +b.
The surface tractions at the free edges ¥ = +b, caused by mechanical loads applied at X = +a are zeros,
ie., 0" = ¢" = 0. The equivalent surface tractions generated by ply thermal eigenstrains and prestress
release are given by Eq. (13).
Denoting o’“ + a’ﬂ = ’“’3 , Eq. (61) can be expanded as

N

sip\2 ~ip\2 sip ~i, i, P =i, si,m ~im0\2 si,m0 ~i,m
1= DGR 4 G 2005 4 (3 4 (P — 205+ () + (6} — 20

Xy xy y
i=1

+ (O,si,mﬁ)Z + (61(;”6)2 _ 20;1;:19 ~;:19 + z{o,szpasz m0 + Gzpo.z m0 ~1p0,sz ml ~1 mH szp}
si,p _si,m0 ~i.p ~im0 ~i.p _si,m0 ~i.mb _Slp
+2{o} o +aay" — 6o — 6y e’ — min (62)

Assuming that applied loads are fixed, the terms that do not include 0“[‘,’;1’ and &;;5 are constant and can be
excluded from the objective function; this provides

N
]:Z(O';i’p)z—f—(()';) 201p01p+( sip)2_|_(6.i,p) 20"’p0'1p—|-2{0'”p0'um6+0' 1m9

xy xy xy
i=1

_ ~ip _sim0 ~i,mU Si,p ip si,m0 ~1p~lm() ~tp im0 __ ~i4m0 i.p :
Gla) "o} + 2{a oy G ot oy oyt — min (63)

xy Xy x1 Xy

Although the interlaminar stresses are not initially included in Eq. (61), they need to be reflected in the
constraints that assure that the local stresses do not violate prescribed failure criteria anywhere in the
laminate; this leads to the form (73) and constraints (74)—(76) below. Since these stresses are not uniform,
their computed magnitudes can be sampled at selected distances from the free edges. For example, along
the free edge ¥ = b, the sampling points can be chosen at positions ¥ = b — ¢;/1, with [ = o0, 6, 4, 3,2, 1
and #; denoting the thickness of the ith ply. Similar positions can be selected along all free edges. Our
numerical tests showed that these points are sufficient to capture or approximate well the interfacial stress
maxima. At each interface k, magnitudes of the thermal (0), thermomechanical (m0) and prestress-induced
(p) interfacial stress components found at the above / — distances can be assembled in vectors,

61;;10 = (y;q)ka GI;qu (gpq)k7 pq = Za)’Za)CZ7 l = 007 6747 3727 17 Y = b - ti/l (64)
ol = (0 ) (P); i=12... Nk=12..n Y=b—t/l (65)
P = [(0{1)113 (0'/1(1)53 T (0{1)11!]T (66)

where the (n x N) influence matrices (Q;)ki consist of coefficients that are values of the a}” stress com-
ponents caused at the kth interface at Y = b — ¢;/1 by a unit prestress applied to the ith ply.
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Analogously, the in-plane stress components (13) and the in-plane average ply stresses (21) can be
assembled in vectors

sj,m0 _ P

O-p; (qpq)jﬂ pq*yﬂxy7 .]*1727"'7N (67)
(6.;);"9) = (qpq)j (68)
”p Qif] i7 rq =y,xy, i,j:1,2,...,N (69)
6-1/;5: (qu)_/i(P)jﬂ pq =y,xy, 171: 1727"'7N (70)

Using these relations, one can write Eq. (63) as

1= (P){(2)1(2) +(2)(Q) = (@) (0 = (Q),( @)y + (25)4(20)is + () (),
v)
(

- (ny)jk(Qxy)kl ( k( xy)kz}( )i + 2{(qy)k(Qj)ki +
+ (@0)i( @)+ (@0)i(Q)i = (49)i(Qy)i — (@)4(23,),}(P), — min (71)
Defining,
jS = (Qf),k(Qi Wt (Ny j (Q QS ( C )/k(QS)ki + (ny)jk(ny)ki
+ (~xy)jk(Qxy)ki - (ny) ( ) (Q ) ( xy)km (72)
Ji= {(qy)k(Q§>k[ + (qy)k(Q ki (‘Iy) (Q ) (‘I}) (Qi)k,} + {(qu)k(ny)ki
+ (@000 — @)(Q0)i — (,)6(Q,)1}
and dividing Eq. (71) by 2 one can write the objective function in the standard form,
1= 3(P),0,(P), + f(P), — min (73)

Denote the ply strength limits as follows. Let £ > 0, F; > 0 be axial and transverse ply strength
in tension (¢) or compression (c¢), and Fg > 0 — the strength in shear. The fiber strength is defined as

= Fi/cr.

The optimization problem (73) is accompanied by the following constraints. Since only tensile forces
may be applied such that the fiber strength F/ is not exceeded, we require that

0<(P),<Fl, i=12,... N (74)

Moreover, the interlaminar stresses caused at the interfaces by application of fiber prestress alone and
after superposition with the interlaminar stresses caused by the mechanical loads should not exceed ap-
plicable ply strength limits. Using the influence matrices (65) one may write the following constraints for the
interlaminar stresses resulting from change in temperature and application of fiber prestress,

— < () +(Q)u(P), < F5
— Fo<(r)i + (Q)u(P), < F (75)
—F<(r), +(0),(P),<F, k=12,...,n [=00,64,321

Requiring that the interlaminar stresses, resulting from application of both fiber prestress and thermo-
mechanical loads, do not exceed strength limits, one can write additional inequality constraints,
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—F < (gi)k + (Qi)k[(P)i < th
—F< (g\l)z)k + (Q;{z)ki(P)i <k (76)
—F<(g), +(0).(P).<F, k=12...,n [=00647321

We note that similar constraints must be observed by the interior stress fields (21) and (53).

Inclusion of singular terms or higher order polynomial approximation for the stress functions (31) and
(32) could result in higher interfacial stress maxima induced by both thermomechanical loads and fiber
prestress at the vicinity of the free edges ¥ = +b. Free edge solution methods providing the singular terms
could be used as sources of the local stresses induced by the mechanical and transformation loads, and
by the prestress release in Eqs. (64)—(73), as well as in the constraints (74)—(76). However, the optimized
prestress distributions should not change significantly because the increase in the stress maxima caused
solely by thermomechanical loading is counteracted by the increase in the stresses caused by release of fiber
prestress.

The problem of optimizing the quadratic function (73) subject to linear inequality constraints (74)—(76) is
solved by the active set method described by Gill et al. (1991). The solution procedure involves calculation
of an initial feasible point and the generation of an iterative sequence of feasible points that converge to the
optimal solution. At each iteration, the set of active constraints is updated in that a constraint is either
added or removed from the active set. The null space of the active constraints is found and the new search
direction is sought that minimizes the objective function in this null space. Maximum feasible steplength is
then computed along the search direction and a constraint corresponding to this steplength is included in
the active set at the next iteration. However, if the steplength is unity the vector of Lagrange multipliers is
evaluated. If all Lagrange multipliers are positive, an optimal solution has been obtained. Otherwise, at the
next iteration a constraint that corresponds to the smallest negative Lagrange multiplier is removed from
the active set.

The results presented in this paper have been obtained using MATLAB software (version 5.3).

6. Examples
6.1. Material properties, loading and reported results

Specific evaluations of fiber prestress needed to minimize free edge stresses in different loading situa-
tions are now presented for two symmetric 9-layer S-glass epoxy laminates, with ((0/90),/0), and
(0/45/—45/90/0), layups. Ply and constituent properties are listed in Tables 2 and 3.

In all laminates, the 0° plies are aligned with the X-axis. The ends X = +a of the large laminate element
in Fig. 1 are assumed clamped and loaded by prescribed mechanical loads. The free edges are located at
Y = +b. Equivalent tractions representing the unloading Eq. (6) or Eq. (13) are applied at all edges.

Laminates are first subjected to a uniform change in temperature, A6 = —150°C, as they would be during
fabrication. For this loading case, we find prestress values that completely eliminate free edge stress con-
centrations in any layup, and find the interior stress and strain fields in the prestressed laminate. Next, three
additional loading situations are examined: (a) Free edge and interior stresses are evaluated for loading of
the laminates by the temperature change A@ = —150°C applied together with a tensile force N, at the
X = +a edges of the laminate. The force magnitude is chosen to cause a total normal strain in the loading
direction corresponding to about 0.75 of the estimated ultimate laminate strain, or less if required by the ply
strength criteria (74)—(76). (b) Optimized fiber prestress distribution is evaluated such that its release
minimizes the free edge stress concentrations for loading of the laminate by N, and A0 = —150°C. (c)
Finally the free edge and interior stresses determined for the loading cases (a) and (b) are superimposed.
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Table 2
Properties of S-glass epoxy ply
Property
Fiber volume ratio, ¢, 0.4461
Longitudinal modulus, £, (GPa) 43
Transverse modulus, £, (GPa) 8.9
In-plane shear modulus, G|, (GPa) 4.5
Major Poisson’s ratio, v, 0.27
Longitudinal thermal expansion coefficient, ¢; (107/°C) 5.0
Transverse thermal expansion coefficient, o, (107¢/°C) 26.0
Longitudinal tensile strength, F{ (MPa) 1280
Transverse tensile strength, F; (MPa) 49
Longitudinal compressive strength, Ff (MPa) 690
Transverse compressive strength, F; (MPa) 158
In-plane shear strength, F; (MPa) 69
Ultimate longitudinal tensile strain, €] 0.029
Table 3
Phase properties of S-glass epoxy ply
Material Modulus E (GPa) Poisson’s ratio v Thermal expansion
coefficient o (107¢/°C)
Epoxy 3.5 0.33 44.49
S-glass 92.0 0.225 2.844

This corresponds to application of the thermal change, maximum allowable tensile force and optimized
fiber prestress release.

In the linear elasticity problems considered, the magnitudes of all local stresses are proportional to those
of applied mechanical or thermal loads, hence the results can be easily scaled and superimposed to reflect
effects of loading combinations that do not violate the ply strength limits (74)—(76). The objective is to keep
stresses induced by A6 = —150°C together with optimized fiber prestress distribution found in step (b), and
stresses found in step (c), within the ply strength limits. Similar limits imposed on the interior stresses are
best evaluated and visualized in terms of initial damage envelopes for the laminates, constructed below
according to the procedure described by Dvorak and Suvorov (2000).

6.2. Free edge stresses due to cooling

Figs. 3 and 4 present the free edge stresses caused in the two laminates by A = —150°C cooling from
matrix curing temperature. Note that relatively large local shear stress concentration are indicated in the
laminates. The fiber prestress applied to all plies that completely cancels all interlaminar stresses in the
entire laminate is found from Eq. (11), using the ply properties listed in Table 2 and Appendix A, as
(o‘{ 1); = 239.08 MPa. Note that this value depends only on ply properties and is independent of ply ori-
entation and laminate layup. This prestress is well below the fiber strength of at least 2800 MPa, implied by
the fiber volume fraction and ply tensile strength listed in Table 2. While generally well within the strength
limits listed in Table 2, some of the computed stresses are significant parts of the total stress under both
thermal and mechanical loads. For example, the longitudinal shear o,, at the (+45/—45) interface in Fig. 4
is equal to 32.36 MPa at the laminate free edge, or 47% of the shear strength Fg in Table 2. Later, in Fig. 13,
superposition of this stress with that induced by an applied tension force helps to reduce the high shear
stresses contributed by a tension force applied in the X-direction.
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Fig. 3. Interlaminar stresses at the free edge ¥ = b of ((0/90),/0), S-glass/epoxy laminate cooled by A6 = —150°C from fabrication to

ambient temperature. These are reduced to zero by release of fiber prestress (o—{ )p =239.08 MPa applied to all plies.

6.3. Free edge stresses due to thermomechanical loads and release of optimized fiber prestress

In the examples that follow, the two laminates are loaded by both the above thermal change, a certain
tensile stress N/t applied at the clamped edges X = +a, and an optimized fiber prestress. Both the
mechanical load and the fiber prestress are sought such that the former is maximized or equal to zero, while
release of the fiber prestress guarantees that the ply strength limits (74)—(76) are not violated either in the
interior or at the free edges ¥ = £b of the laminate.

The solution procedure is best illustrated by considering the ((0/90),/0), laminate. First, an initial
damage envelope is constructed for this laminate, loaded only by the temperature change A = —150°C and
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Fig. 5. Initial damage envelope for the ((0/90),/0), S-glass/epoxy laminate without prestress and after optimized prestress release.

s

Optimized fiber prestress is equal to 2100 MPa in the 0° plies and to 357 MPa in the 90° plies. Thermal change of A0 = —150°C was
applied in both cases.

by in-plane biaxial normal stresses N, /¢ and N, /t, without prestress, following the procedure in Dvorak and
Suvorov (2000). This envelope in Fig. 5 consists of branches based on ply strength magnitudes listed
in Table 2. For example, the ¢\’ branch indicates where the overall stresses cause local compressive stress
in the 0° ply equal to the longitudinal compressive strength £ = 690 MPa, Table 2. As expected the interior
branches that form this envelope under biaxial overall tension correspond to the transverse tension
strengths of the 0° and 90° plies. Under biaxial overall compression, the longitudinal compressive stress in
both ply orientations far exceeds the transverse compressive stresses, hence the longitudinal compressive
strength branches become the interior branches. A similar result was found in a (0/90),, laminate (op. cit.,
Fig. 2), with the ply transverse strength branches entering the interior position near the left bottom corner
of the envelope, under nearly isotropic biaxial compression.

This initial damage envelope indicates the approximate initial magnitude of the tension force N, /¢ that
can be safely applied to this laminate. Next, a sufficiently large prestress value is estimated and applied in
the 0° plies together with AQ = —150°C and the corresponding prestress of 239.08 MPa in the 90° plies,
such that after release of this prestress, the interior average ply stresses do not exceed the limits listed in
Table 2. This condition is examined again with a new initial damage envelope. The estimated prestress in
the 0° plies is then prescribed in the optimization procedure, and the optimal prestress values are found
in the off-axis plies by solving the optimization problem (73)—(76). The initial damage envelope is then
reconstructed for the laminate loaded by this optimized prestress; some strength branches may now assume
new interior position which defines the strength envelope. The maximum value of N, /¢ that can be safely
applied may change, and if so, the optimization problem is solved with the updated value. The iteration is
terminated when the loading vector is entirely within the damage envelope, so that the laminate remains
damage free during mechanical loading.
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Table 4
Optimized fiber prestress magnitudes, (o7, Vo
((0/90),/0), S-glass/epoxy at N, /t = 616.6 MPa and (0/45/-45/90/0), S-glass/epoxy at N, /t = 397.64 MPa and
Af = —150°C A = —150°C
(a) (b)
0° plies: 2100 MPa 0° plies: 2000 MPa
90° plies: 357 MPa 90° plies: 540.8 MPa

45° plies: 272.2 MPa
—45° plies: 275.9 MPa

For the ((0/90),/0), laminate, this iterative procedure has finally produced the initial damage envelope
shown for the optimized fiber prestress in Fig. 5. All prestress values are stresses applied to fibers before and
during matrix consolidation. Note that the branches now defining the compression strength are, in part,
different from those in the laminate with no prestress. More significantly, the maximum tensile stress N, /¢ =
616.6 MPa can now be safely applied, together with the transverse stresses indicated by the initial damage
envelope of the prestressed laminate. This far exceeds the value of 86.58 MPa that would be admitted
without damage in the laminate without prestress. Table 4(a) indicates the maximum tension and the
optimized ply prestresses. A relatively high magnitude of fiber prestress in the 0° plies is required to reduce
the 90° ply stresses due to thermomechanical load. However, at ¢, = 0.4461, and F{ = 1280 MPa, the
implied fiber strength exceeds 2800 MPa, which is well above the levels indicated in Table 4(a).

Fig. 6 shows the optimized prestress values as function of the maximum applied normal strain in the 0°
direction. In the present case, this was chosen as ¢, = 0.022 or 0.75 of the ultimate strain for this laminate,
and was reached under the N,/t = 616.6 MPa.

Figs. 7 and 8 show the distributions of the interlaminar stresses ¢, and o,, at all ply interfaces, under (a)
the maximum force and thermal change, assuming no damage, (b) after release of the optimized prestress
and under thermal change alone, and (c) under the maximum tension force superimposed upon state (b). It
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Fig. 6. Distribution of optimized fiber prestress in the plies of the ((0/90),/0), S-glass/epoxy laminate as function of the applied strain
€, in the 0° direction.
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Table 5 ~
Interlaminar stresses in the ((0/90),/0), laminate
[o. at Y = b] [0, at Y = b —1;/3]

Interface A0 N, P, + A0 X A0 N, P, + A0 Xz
I-1 11.9 19.61 —19.61 0 —11.6 —19.11 19.11 0
I-2 6.34 10.44 —10.44 0 12.69 20.9 —20.9 0
I-3 3.85 6.35 —6.35 0 —11.23 —18.51 18.51 0
I-4 2.9 4.78 —4.78 0 11.8 19.44 —19.44 0

A = —150°C, N,/t = 616.6 MPa, X = N, /t + P, + A0, P, = (a"lfl);,, 0° plies: 2100 MPa, 90° plies: 357 MPa.

Table 6 -
Average ply and fiber stresses in the ((0/90),/0), laminate
AD N, P+ A0 z

0 ply: o} —17.47 955.13 117.03 1072.2
0 ply: a‘{l —81.59 2031.22 319.67 2350.89
0 ply: o> 20.53 33.82 -33.82 0
90 ply: o, —25.66 —42.27 42.27 0
90 ply: o7, —99.47 —146.18 110.91 —-35.26
90 ply: o, 21.84 193.44 —146.29 47.15

A0 = —150°C, N,/t = 616.6 MPa, X = N/t + P, + A0, P, = (],)}, 0° plies: 2100 MPa, 90° plies: 357 MPa.

is evident that application of the maximum allowable mechanical load actually reduces the interlaminar free
edge stresses in the prestressed laminate to zero. The optimized prestress and thermal change cause much
smaller stresses than the mechanical and thermal loads in the absence of prestress.

Tables 5 and 6 show the numerical values of the interfacial stress maxima and average ply and
fiber stresses caused by the individual loading components. The ¢,, maximum is typically located at the
distance equal to 1/3 ply thickness from the free edge, or at ¥ = b — ;/3. Note that under N,/t = 616.6
MPa, the maximum tensile stress in the 0° ply increases from 955.13 (assuming no damage) to 1072.2 MPa,
or by 12%, in the presence of the optimized fiber prestress. The latter value is lower than the ply tensile
strength of 1280 MPa. Also shown in Table 6 are the fiber stress values contributed by the load com-
ponents. The residual stresses retained after release of fiber prestress are much lower than the original
prestress, and thus make only a small contribution to the total fiber stress during subsequent thermome-
chanical loading.

The prestressed laminate remains free of damage at the load level N, /¢t = 616.6 MPa, which would have
caused extensive internal damage and perhaps free edge delaminations in the absence of prestress. Of
course, the 0° ply would carry a far higher part of the applied stress in a damaged laminate.

Figs. 9-13 and Tables 4(b), 7 and 8 present results for the (0/45/—45/90/0), stacking sequence of the S-
glass epoxy laminate. The procedure followed involved evaluation of the initial damage envelope after
thermal change but with no prestress, an estimate of the maximum fiber prestress value in the 0° plies,
finding of the optimized prestress values in the off-axis plies, replotting of the initial damage envelope for
the prestressed laminate, and updating of the 0° fiber prestress. The initial and final positions of the damage
envelopes are shown in Fig. 9. Again, different interior strength branches control compression strength, and
as a result, the optimized prestress expands somewhat the “diameter” of the damage envelope in the di-
rection of the N,/t stress axis. In particular, application of fiber prestress in the 0° plies increases longi-
tudinal tensile ply stresses in 0° plies compared to that caused by thermomechanical load applied without
prestress (Table 8). This translates the compression branch J%Q in the direction opposite to that of the
loading vector. In contrast, the prestress decreases transverse tensile stresses in the 90° plies. This translates
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Fig. 9. Initial damage envelope for the (0/45/—45/90/0), S-glass/epoxy laminate without prestress and after optimized prestress
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the compression branch agg(Q in the direction of the loading vector. As a result, the a§§< strength branch

controls in part the compressive strength of the prestressed laminate.
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Table 7
Interlaminar stresses in the (0/45/—45/90/0), laminate
[o. at Y = b] o, at Y =b—1¢/3] [0 at Y = b]

Inter- A0 N, P+A0 % A0 N, P+A0 X A6 N, P+A0 X
face
I-1 4.05 —10.81 829 -252 567 11.09  -7.11 398  -10.19 3241 —18.78 13.63
I-2 6.79 —19.44 1425 —5.18 —0.25 —4.2 419 —0.01 3236 —113.68 69.0 —44.68
I-3 9.87 40.77 —44.37 -3.60 —5.61 —44.39 46.35 1.96 -9.27 27.56 —14.92 12.63
1-4 7.52 59.02  —60.04 —1.02 12.40 19.10 —-26.59 —7.48 —1.15 4.08 —2.43 1.65

A = —150°C, N,/t = 397.64 MPa, X = N, /t + P, + A0, P, = (‘7{1 );,, 0° plies: 2000 MPa, 90° plies: 540.8 MPa, +45° plies: 272.2 MPa,
—45° plies: 275.9 MPa.

Table 8
Average ply and fiber stresses in the (0/45/—45/90/0), laminate
A N, P+ A0 s

0 ply: o, -16.0 730.90 310.73 1041.6
0 ply: o, —78.39 1561.94 723.21 2285.14
0 ply: o> 20.24 —-0.38 —14.04 —14.4
0 ply: o1 0.0 0.0 0.11 0.11
45 ply: oy —21.68 285.07 —204.86 80.2
45 ply: o}, -90.78 588.66 —447.54 141.12
45 ply: o 21.15 70.97 —54.88 16.09
45 ply: o1 —1.24 -97.35 55.61 —41.74
—45 ply: —21.68 285.07 —204.18 80.88
—45 ply: o, —90.78 588.66 —445.95 142.71
—45 ply: 0, 21.15 70.97 —54.72 16.24
—45 ply: o1 1.24 97.35 —55.61 41.74
90 ply: oy —27.36 —160.77 169.16 8.40
90 ply: o7, —103.17 —384.63 376.01 -8.61
90 ply: o, 22.06 142.31 —95.56 46.76
90 ply: o1 0.0 0.0 0.11 —0.11

AO = —150°C, N, /t = 397.64 MPa, X = N/t + P, + A0, P, = (d?, ), 0° plies: 2000 MPa, 90° plies: 540.8 MPa, 4+45° plies: 272.2 MPa,
—45° plies: 275.9 MPa.

Fig. 10 presents the optimized prestress distribution in the plies as a function of maximum applied strain,
in the present case this was found as ¢, = 0.017, at the maximum allowable applied stress of N,/ = 397.64
MPa. This is lower than in the previous case, limited by the requirement that the loading vector remains
within the damage envelope of the optimally prestressed laminate. The distribution of fiber prestress in Fig.
10 deviates significantly at €, > 0.011 from the linear or nearly linear character displayed in Fig. 6. This
redistribution is enforced by the constraints (74)—(76) imposed by the ply strength criteria. While the lines
for the 445 and —45 plies appear to coincide, they are actually somewhat different, as indicated in Figs. 11—
13 and Table 4(b). This reflects the presence of different (0 and 90) ply orientations adjoining the 45 and
—45 plies.

Figs. 11-13 show the distributions of interlaminar free edge stresses for (a) the maximum mechanical
load and the thermal change, but no prestress, (b) optimized prestress, thermal change, but no mechanical
load, and (c) prestress, mechanical load, and thermal change. The peel stress o, = 59.02 4+ 7.52 = 66.72
MPa at the I-4 interface, under thermomechanical loads acting alone (Fig. 11a and Table 7) exceeds the ply
transverse strength of 49 MPa. This is counteracted by the similarly high compressive normal stress gene-
rated at this interface by the optimized prestress in the presence of thermal change (Fig. 11b) so that nearly
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zero normal stresses at all interfaces are found in the prestressed and mechanically loaded laminate, Fig.
11c. The shear stress o, = —113.68 + 32.36 = —81.32 MPa at the interface I-2 in the loaded laminate
without prestress (Fig. 13a and Table 7) is well above allowed value of —Fg = —69 MPa in Table 2, but is
reduced to this value by the optimized prestress.

The optimized fiber prestress distribution and interlaminar stresses were also found for 9-layer
(90/-45/0/45/0), S-glass epoxy laminate. The interlaminar stress magnitudes appearing in Figs. 12a and
13a and those found for the (90/—45/0/45/0), system support the observation made by Herakovich (1989,
1998) that the laminate with adjacent +45° layers is particularly susceptible to large shear stress concen-
trations, more so than the system with interspersed +45° layers. Therefore, application of fiber prestress for
interlaminar stress reduction appears to be most beneficial in the (0/45/—45/90/0), layup.

It is worth mentioning that the fiber prestress can be useful in reduction of free edges stresses caused by
compressive axial loading N,/t. This is especially true for quasi-isotropic laminates. Prestress of 0° plies
would have to be decreased whereas prestress of +45-plies increased. In fact, it was found that distribution
of optimized fiber prestress plotted over the range of negative axial strain is a continuation of the lines
shown in Figs. 6 and 10 for positive values of axial strain. However, since the prestress of 0° plies becomes
small or zero the damage envelope will not be translated in any significant way towards larger magnitudes
of the maximum allowable compressive stress N, /1.

We note in passing that the procedure has also been applied to laminates made of high modulus carbon/
epoxy plies. The damage envelopes found by optimizing the fiber prestress are often much larger than those
for such laminates without prestress. Results will appear elsewhere.

7. Closure

Analysis of free edge stress concentrations was presented for laminates subjected to thermal changes, ply
eigenstrains, release of fiber prestress that was applied prior to matrix consolidation in individual plies, and
to mechanical loads. The thermal and transformation loads were converted into a superposition of certain
uniform fields with solutions of related mechanical loading problems. Release of fiber prestress induces
equivalent overall compression at the edges of each prestressed ply.

A procedure was described for evaluation of optimized fiber prestress distribution in individual plies
of the laminate, which when released, creates residual stresses that suppress both damage development
in the interior of the laminate and interlaminar delamination at the free edges. The free edge residual
stresses remain within certain allowable limits while the laminate is unloaded, and actually decrease under
applied mechanical loads. The interior residual stresses caused by prestress release are similar to those
induced by equivalent overall in-plane compression. In superposition with applied overall tension, these
stresses reduce and keep the ply stresses within allowable limits at overall loads far exceeding those allowed
in laminates without prestress. Although the examples shown were constructed for loading by a uniaxial
tension, the resulting damage envelopes can be utilized in applications involving cyclic loading programs
that involve additional overall loads, as long as the loading path is altogether bounded by the damage
envelope. Of course, the method can also be employed in finding maximum load amplitudes for programs
of cyclic loading dominated by a combination of overall stress components. The results clearly demon-
strate the potential of fiber prestress in damage control and prevention in composite laminates. In con-
junction with our earlier paper (Dvorak and Suvorov, 2000), they provide a concise methodology for
design of optimal prestress distribution that can substantially improve resistance to both interior dam-
age and free edge delaminations in laminated plates. They also suggest need for prevention of unde-
sirable and potentially harmful residual stresses, by careful analysis and control of laminate fabrication
processes.
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Appendix A

Denote the local coordinate system of the transversely isotropic unidirectional composite material by
(x1,x2,x3). Suppose the fiber axis coincides with x; axis of the system. Then the compliance matrix of the
transversely isotropic ply written in the local coordinate system is defined as follows,

€11 1/E1 7V12/E1 7V12/E1 O 0 0 011

€22 —V12/E1 1/E2 —V23/E2 0 O 0 ()}

€33 _ —V12/E1 —V23/E2 1/E2 0 0 0 033 (A 1)
2623 0 0 0 1/G23 0 0 073 ’
2613 0 0 0 0 1/G12 0 g13

2612 0 0 0 0 0 1/G12 012

Engineering constants E;, v;, E» and Gy, are given in Table 2 for S-glass epoxy ply. Compliance matrix
given by Eq. (A.1) transforms into the overall coordinate system according to the third term in Eq. (2). The
transformation matrices are defined as,

2 2 00 0 2cs
£ 2 00 0 —2cs
T_ 0O 0 1 0 O 0 R [T’I]T
0 0 0 ¢ =—s 0
0 0 0 s ¢ 0
—cs s 00 0 -5
¢ = cos(¢), s = sin(¢) (A2)

and the angle ¢ is measured from the laminate 0° direction X to the x; fiber direction in the ply.
Hill’s (1964) elastic moduli of the transversely isotropic plies are defined as

k:—[1/G23—4/E2+4V%2/E1]71 l:2k\)12 n:E1+12/k m:G23 p:GIZ

The elastic moduli of matrix or fiber phases will be denoted by the same letters but with the subscripts m of
f, respectively.

We assume that the S-glass fiber and epoxy matrix are isotropic phases constituting the ply with the
properties given in Table 3.

Evidently, the fifth constant — the transverse Poisson’s ratio v,3 is required to completely define com-
pliance matrix in Eq. (A.1). The effective stiffness of the composite ply and the missing transverse Poisson’s
ratio v,; are found by one of the averaging methods described in Dvorak and Srinivas (1999). These
methods regard each phase as an inclusion residing in a large volume of comparison medium with selected
elastic moduli and the comparison medium itself is an inclusion embedded in a very large volume of the
effective medium. The elastic properties of the effective medium are identified with those of the composite
ply given in Table 2. The following choice of elastic moduli of the comparison medium respects already
existing elastic moduli of the composite ply (Table 2) and phase properties (Table 3): p, = 3.6084, m, =
2.8005, and kg = 3.9621, ny = c,unm + crny = 50.0783, Iy = [,, = 2.5542 GPa. Also, fiber volume fraction ¢,
is set equal to ¢, = 0.4461.
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The elastic moduli of the composite ply can be found now,

_ 2C.fpf (.pO +p1n) + 2CnPm (pO +pf)
2(Cm(po +p/") + Cf(po erm))
moko(cymy + cuki) + memy, (ko + 2my)
m =
moko + (ko + 2mo) (c/my + cumy)

_ crky(kn 4 mo) + Cukin(ky 4 mo)

k A3
Cf(n’l() +km) +cm(m0 +kf) ( )
;= Crlylhn A+ mo) + col(ky +mo)
Cf'(ﬂ’l() =+ km) 4+ Cn (m() =+ kf)
m(ln — 1s) } { cr(ly — 1) }
= Criy + Cplly + Ay - + mlm
TR Gl G /{Cf(mo ) + Cn(mo+ k) J € cr(mo + k) + cn(mo + kr)
The ply stiffness matrix in the local coordinates then becomes,
454481 4.5335 4.5335 0 0 0
4.5335 11.4862 5.3047 0 0 O
4.5335  5.3047 11.4862 0 0 O
L=1 "% 0 0 3098 0 0 (A4)
0 0 0 0 45 0
0 0 0 0 0 45
and the compliance matrix,
0.0233  —0.0063 —0.0063 0 0 0
—0.0063 0.1124 —0.0494 0 0 0
—0.0063 —0.0494 0.1124 0 0 0
§= 0 0 0 0.3235 0 0 (A3)
0 0 0 0 0.2222 0
0 0 0 0 0 0.2222
Transverse Poisson’s ratio immediately follows as,
E
Vo3 = 2G223 — 1, Vo3 = 0.4398 (A6)

The thermal expansion coefficients of the phases (Table 3) are found from experimentally measured
expansion coefficients of the composite ply (Table 2) and the elastic moduli of the comparison medium by
using formula derived by Levin (1967).

Appendix B

In this appendix we formulate restrictions on magnitude of force resultants N,, at the edges X = £a and
N, at ¥ = +b for the choice of stress field dependent on two variables Y and Z and derivable from two
stress functions F(Y,Z) and ¥(Y,Z) as indicated by Eq. (28). As before, we analyze the stress field on the
plane X = 0 bounded by two parallel edges ¥ = +b and top and bottom surfaces of the plate.
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We start with the force resultant N,,. If shear stresses ¢%. are applied at the edges Y = +b, then for
arbitrary value of Y coordinate,

N ZN N Zi N Zi
NW:/ a;;dz:/ oyde:Z/ a;XdZ:Z/ VdZ =¥y - ¥, (B.1)
i=1 Zi-1 i=1 Zi—1

20 20

On the other hand,

N N Y=b N zi Y=b
Ny, :/ ol dZ + N :/ / 0,dYdZ = Z/ / ol dYdz
20 20 ==b i=1 Jzim1 ==b
N z Y=b N
:Z/ / lszdeZ:Z/E!”'cos(n,Z)ds:EPN—‘I’O
i=1 Yz JY==b i=1 7

where 7y, is the contour of ith ply on the plane X = 0. From Egs. (B.1) and (B.2) it follows that the loading
conditions should be such that,

(B.2)

ZN ZN
N}x:/ o;;dZ:ny:/ ot dZ + N (B.3)

20 20

It is seen that if the stress field is derivable from two stress functions F(Y,Z) and ¥(Y,Z), as indicated by
Eq. (28), then the shear force resultant N,, must be equal to N,,.
For prestressed laminated plate subjected to ply transformation fields,

N N
/ 0,dZ = / 0,,dZ (B.4)
FA)) Z0

and, hence,
N =0 (B.5)

Thus, actually applied shearing force resultant at the edges X = +a must be zero provided that no
mechanical loads are applied at the edges ¥ = +b.

Appendix C

We write the matrices in the system of differential equations (51) in the blockwise manner,

wFF WFG 0 0 Fl 4 vFF VFG VF b4 VFH Fll
wGF WGG 0 0 GI Vv N VGF vGG vGW VGH GII
0 0 0 0 'PIV v‘PF v‘PG v'I"P v‘PH 'II”
0 0 00 HI 4 VHF VHG vH v VHH HII
uFF uF’G llF v uFH F
uGF uGG uG'I’ uGH G _p Cl
+ u YF u YG u vy u YH 4 - ( . )
MHF IIHG llH v IIHH H

Substitution of Eq. (55) into homogeneous part of Eq. (C.1) leads to the system of algebraic equations,
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WFF wFG O O PF B VFF VFG VFY/ vFH pF
GF  ,,GG G GF GG | G¥ | GH G
o w 0 0 pw Lol v v v D
0 0 0 0 P v'I’F v'PG a4 v&”H P’P
0 0 0 0 pH vHF VHG VH b4 VHH PH
uFF uFG uFW uFH pF -_
uGF  yGG  G¥  yGH G
+ ulF  u¥S Y e ’I;'ff =0 (C2)
uHF uHG uH‘I’ ”HH pH ]
Denote p = w? and ¢ = pp”, ¢° = pp°®. Then Eq. (C.2) can be reduced to the following,
TwiT Wl Wi e P 7 T gl
wGF WGG VGF VGG vG‘I’ VGH qG
O 0 v‘[’F v‘I’G v‘["[’ v‘PH pF
p O 0 vHF vHG vH‘P VHH pG
O 0 -1 0 0 o0 |]|p”
Lo 0 0 -1 0 0 ]Lp”]
(0 0 o W™ WY WM [q" ]
O 0 uGF uGG uG‘I’ uGH q
O 0 u‘I’F u‘PG u‘["l’ ulPH F
+ L - (C.3)
0 0 llHF uHG uH‘I’ uHH p
10 0 0 0 0 ||p
o1 0o 0o 0o 0 ]Lp]

Denoting the first matrix in Eq. (C.3) by B and second matrix by 4, Eq. (C.3) can be reduced to standard
generalized eigenvalue problem,

Ax = —pr (C4)
where x is a 6n + 1 vector,
qF
7
V4
0 (C5)
pY’
pH

Solution of the eigenvalue problem Eq. (C.4) yields 6n + 1 eigenvalues p and 6n + 1 eigenvectors x. 6n + 1
eigenvalues p will produce 12z + 2 eigenvalues w since p = o?.
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